Refine Your Search

Topic

Search Results

Technical Paper

The Modular Engine Concept: a Cost Effective Way to Reduce Pollutant Emissions and Fuel Consuption

2007-09-16
2007-24-0060
A promising technique to enhance fuel efficiency of large capacity S.I. engines is the de-activation of some cylinders at partial load, through the cut-out of fuel metering and a specific control of the airflow. Thanks to the ensuing reduction of throttling losses (the active cylinders operate at a much higher load), fuel consumption can be reduced, without any negative perception from the driver. Such a technique has been already applied successfully on some production engines, at the cost of some additional complication on the valve-train system. The application analyzed in this study is a little bit different, being aimed to reduce both fuel consumption and emissions, with a minimum impact on engine design. Larger fuel savings may be obtained by coupling the cylinder de-activation with VVT.
Technical Paper

CFD parametric analysis of the combustion chamber shape in a small HSDI Diesel engine

2005-10-12
2005-32-0094
The paper aims at providing information about the influence of the combustion chamber shape on the combustion process evolution in a high speed direct injection (HSDI) small unit displacement engine for off-highway applications. Small HSDI Diesel engines require a deep optimisation process in order to maximize specific power output, while limiting pollutant emissions without additional expensive pollutant aftertreatment equipments. Making reference to a current production engine, the purpose of this paper is to investigate the influence of combustion chamber design on both engine performances and combustion efficiency. The actual piston omega-shape is progressively distorted in order to assess the influence of some of the main bowl-features on both mean-flow evolution, mixture formation and pollutants.
Technical Paper

Comparison Between Two Combustion Chambers for a Motorcycle Racing Engine

2000-06-19
2000-01-1894
An experimental and computational analysis has been performed on the combustion chamber of a two cylinder, four stroke, four valve, spark ignition engine developed by Ducati Motor SpA for the Super Sport Championship. Two cylinder head configurations have been analyzed by using a three dimensional CFD code. Port and valve assemblies do not change. Only the combustion chamber surface changes in order to improve the intake flow. Head flow performances in terms of permeability have been determined by computing the steady discharge coefficients at different valve lifts. These values have also been measured on a steady flow test bench. Head flow performances in terms of flow conditioning, i.e. the attitude to promote tumbling and enhance combustion, have been determined by computing the equivalent solid body tumbling number of the flow field at intake bottom dead center.
X